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Abstract
Constructs that reflect differences in variability are of interest to many researchers studying
workplace phenomena. The aggregation methods typically used to investigate “variability-based”
constructs suffer from several limitations, including the inability to include Level 1 predictors and a
failure to account for uncertainty in the variability estimates. We demonstrate how mixed-effects
location-scale (MELS) and heterogeneous variance models, which are direct extensions of tra-
ditional mixed-effects (or multilevel) models, can be used to test mean (location)- and variability
(scale)-related hypotheses simultaneously. The aims of this article are to demonstrate (a) how the
MELS and heterogeneous variance models can be estimated with both nested cross-sectional and
longitudinal data to answer novel research questions about constructs of interest to organiza-
tional researchers, (b) how a Bayesian approach allows for the inclusion of random intercepts and
slopes when predicting both variability and mean levels, and finally (c) how researchers can use a
multilevel approach to predict between-group heterogeneous variances. In doing so, this article
highlights the added value of viewing variability as more than a statistical nuisance in organiza-
tional research.

Keywords
multilevel models, mixed-effects location-scale models, heterogeneous variance models, variability-
related hypotheses, Bayesian

Organizational researchers commonly use the amount (e.g., mean) of a variable as both a predictor
and an outcome of substantive interest, while examining variability for instrumental purposes. For
example, researchers using direct consensus or referent shift approaches (Chan, 1998) calculate
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agreement among members of a group to justify the aggregation of a Level 1 variable (James,
Demaree, & Wolf, 1984, 1993). Similarly, before proceeding with their analysis, researchers using
general linear models assess whether residuals follow the assumed normal distribution with a
homogeneous variance (e.g., Kutner, Nachtsheim, Neter, & Li, 2004). In such cases, researchers
may view variability as a nuisance that interferes with obtaining appropriate estimates and infer-
ences regarding the mean. However, theoretically meaningful interpretations of variability exist in
many areas of organizational research (e.g., personality consistency, performance variability, leader-
member exchange [LMX] differentiation, strategic consensus, pay dispersion) and researchers need
to utilize methods designed for studying variability to advance the understanding of these workplace
phenomena.

Currently, it is common for researchers publishing in top organizational journals to use single-
level aggregation methods in analyses predicting variability (e.g., calculating the within-group
standard deviation and using it as an outcome in analyses). However, we caution against this
common practice due to important limitations, including a failure to account for uncertainty in the
variability estimates and the inability to appropriately incorporate Level 1 predictors in analyses.
Instead, we propose that the study of variability is ripe for multilevel investigation and explain how
multilevel approaches enable researchers to address new research questions that cannot be answered
using aggregation and single-level analyses. Specifically, we demonstrate how models that are direct
extensions of traditional mixed-effects (or multilevel) models may be used to test mean (location)-
and variability (scale)-related hypotheses simultaneously. The most general of these models, mixed-
effects location-scale (MELS) models, allow for random effects on the location side and the scale
side of the model, while the more restricted heterogeneous variance models allow for random
effects on the location side of the model and fixed effects on the scale side of the model (see the
glossary in Appendix A for definitions of all bold terms).

We are not the first to discuss MELS or heterogeneous variance models. MELS models are a
relatively recent development in the long history of different approaches to modeling heterogeneous
variances (e.g., Aitkin, 1987; Bryk & Raudenbush, 1988; Culpepper, 2010; Goldstein, 2011; Har-
vey, 1976; Leonard, 1975; Lindley, 1971; Pinheiro & Bates, 2000; Raudenbush, 1988). Researchers
have discussed the development of these models in statistical journals and texts (e.g., Goldstein,
2011; Hedeker, Mermelstein, & Demirtas, 2008; Lin, Mermelstein, & Hedeker, 2018a, 2018b;
Walters, Hoffman, & Templin, 2018) and applied these models (most often) in fields where the
collection of intensive longitudinal data is more common (e.g., medicine; Pugach, Hedeker, Rich-
mond, Sokolovsky, & Mermelstein, 2014). For example, Watts, Walters, Hoffman, and Templin
(2016) examined whether time-invariant (Level 2 predictors, e.g., gender, age, Alzheimer’s disease
status) as well as time-varying predictors (Level 1 predictors, e.g., day monitor worn) were asso-
ciated with individual differences in mean level (location side) as well as intraindividual variability
(scale side) of physical activity. Although less common, researchers also apply these models to
nested cross-sectional data. For example, this approach has been used in an educational context to
assess whether the variability in academic achievement within a school is affected by children’s
socioeconomic status (SES; Leckie, French, Charlton, & Browne, 2014). By using a Bayesian
approach to include a random effect for SES on the scale side of the model, Leckie et al. (2014)
demonstrated that the effect of SES on variability in academic achievement within schools varied by
private versus public sector (i.e., a cross-level interaction). Culpepper (2010) employed a similar
approach to reveal that whites and females demonstrate more predictable academic performance
than their male or racial/ethnic minority counterparts.

The first use of these models within the organizational sciences occurred recently, with an
important and innovative application to the study of consensus emergence by Lang, Bliese, and
de Voogt (2018). With this exception, we suspect MELS and heterogeneous variance models are
underutilized in the organizational research literature for at least two reasons. First, it is relatively
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rare for organizational researchers to have intensive longitudinal data. Second, most articles have
been published in statistical and medical journals that organizational scholars tend not to read, and
these articles may not be accessible to all readers (e.g., they often assume a depth of mathematical
training beyond the level typically provided in graduate programs training organizational
researchers).

The objective of this article is to broaden the use of multilevel approaches for studying variability in
the organizational sciences. We begin by identifying examples of variance-based constructs that are
of interest to organizational researchers, and throughout the article we illustrate the types of research
questions that multilevel approaches for predicting heterogeneous variances can answer, including
questions that cannot be asked or adequately addressed using typical methodological practices (i.e.,
aggregation and single-level analyses). Then, using simulated data, we first demonstrate the estimation
of a MELS model predicting heterogeneous within-group variance for a nested cross-sectional design.1

Second, we demonstrate the estimation of a heterogeneous variance model for predicting between-
group variances (i.e., intercept and slope) for a longitudinal design using a multigroup approach. In
addition to predicting heterogeneous between-group variances for the intercept and slope, this model
also allows for a heterogeneous covariance between these two random effects.

The flexibility of modeling the scale side with random effects does have computational costs,
especially as the number of random effects increases (Asparouhov & Muthén, 2016). Researchers
will likely need to use a Bayesian analysis to estimate more complex MELS models (e.g., those with
both random intercepts and slopes on the location and scale sides of the model as is done in the
nested cross-sectional example). Throughout the article, as we demonstrate this approach, we aim to
strike a balance between providing the technical detail and practical guidance researchers need to
use these models in their work. To that end, we use an open-source statistical programming language
to conduct the analyses, provide all code used to estimate the models in our examples, and offer
detailed interpretations of the model output. Finally, we discuss additional practical considerations
for researchers applying multilevel models to predict heterogeneous variance.

Review of the Organizational Literature

In this section, we present the results of a literature review examining the study of theoretically
meaningful interpretations of variability in organizational research (i.e., variability-based con-
structs). We start our review in the year in which Hedeker and colleagues (2008) demonstrated how
to estimate the random intercept MELS model in Biometrics using readily available software,
thereby making this method more readily available to researchers. We identified articles by search-
ing for the terms variability, dispersion, consensus, and consistency in article titles, keywords, and
abstracts of the following top journals: Academy of Management Journal, Administrative Science
Quarterly, Journal of Applied Psychology, Journal of Management Studies, Journal of Manage-
ment, Management Science, Organization Science, Personnel Psychology, and Strategic Manage-
ment Journal. We identified over 60 articles in which variability-based constructs were discussed
(conceptually) or examined as the substantive focus of the article (e.g., as predictor, dependent
variable, moderator). While not exhaustive (e.g., researchers may use other terms to refer to
variance-based constructs), this search allows us to illustrate the interest in and methods used to
examine variability-based constructs in organizational research. We found that organizational
researchers have not widely adopted MELS models or similar approaches.

Examples of Variability-Based Constructs in Organizational Research

Across the micro-macro organizational research continuum, we identified many examples of
variability-based constructs. These constructs reflect between-person, -team, or -organization
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differences in variability across time/situations (e.g., stability of preferences, attitudes, behaviors) as
well as variability in the characteristics, perceptions, or behaviors of lower-level entities (e.g.,
people, but also teams, business units) that compose a higher-level entity (e.g., team, occupation,
organization, or industry). Table 1 provides a description of these constructs.

Many variability-based constructs have broad relevance across levels and areas of focus. For
example, researchers have examined performance variability for firms over time (e.g., Wales,
Patel, & Lumpkin, 2013; Wang & Choi, 2013), within an industry (e.g., Balasubramanian &
Lieberman, 2010; Lenox, Rockart, & Lewin, 2010), across organizational subsidiaries (Figueir-
edo, 2011), across people who occupy the same type of job (Bidwell & Keller, 2014), and for
employees over time (Barnes, Reb, & Ang, 2012; Reb & Greguras, 2010). Similarly, pay disper-
sion has been discussed in reference to labor markets (Cobb & Stevens, 2017), organizations as a
whole (Carnahan, Agarwal, & Campbell, 2012), and perhaps most commonly, top management
teams (e.g., Chin & Semadeni, 2017; Fredrickson, Davis-Blake, & Sanders, 2010; Jaskiewicz,
Block, Miller, & Combs, 2017; Lim, 2018).

Several constructs also reflect variability in characteristics of group members (e.g., personality
heterogeneity) or the extent to which there is agreement among members in the group (e.g., justice
climate, efficacy dispersion). For example, strategic consensus regarding the firm’s priorities is
commonly assessed for managers in the top team, but also at different levels and in different parts
of the organization (Kellermanns, Walter, Lechner, & Floyd, 2005). The variability of supervisor
behavior across time (e.g., justice variability; Matta, Scott, Colquitt, Koopman, & Passantino,
2017) and when interacting with different members of the workgroup (LMX differentiation;
Gooty & Yammarino, 2016; Henderson, Liden, Glibkowski, & Chaudhry, 2009) has also been
a topic of study.

It is important to note that most prior research has either conceptually discussed the nature of
variance-based constructs or aimed to establish relationships between the construct and important
workplace outcomes. For example, Ployhart, Weekley, and Baughman (2006) found that human
capital emergence, conceptualized as consisting of both personality level (aggregate mean per-
sonality) and personality homogeneity (aggregate standard deviation of personality) within jobs
and within organizations, predicted employee job satisfaction and performance. Further, research
focusing on within-person personality consistency has found that the relationship between the
level of personality traits and job performance is stronger when people are less variable in their
personality expression across time/situations (Dalal et al., 2015). Other research has linked varia-
bility in the quality of relationships between a supervisor and his or her subordinates (i.e., LMX
differentiation) to job satisfaction, performance, and other outcomes (e.g., Erdogan & Bauer,
2010; Schyns, 2006). In the literature on workplace groups and teams, researchers have proposed
that team efficacy dispersion will predict team effectiveness above and beyond the average level
of efficacy within the team (DeRue, Hollenbeck, Ilgen, & Feltz, 2010). At the department or
organization level, researchers have found a stronger relationship between climate level (i.e.,
mean rating of perceptions of the workplace) and outcomes of interest (e.g., such as work satisfac-
tion and organizational commitment) when employees view the climate similarly (i.e., there is a
strong climate in place; González-Romá, Peiró, & Tordera, 2002). Finally, at the firm level, firms
with higher trading variability have been found to have lower expected returns (Chordia, Sub-
rahmanyam, & Anshuman, 2001).

These examples are part of the mounting evidence suggesting that variability (in addition to the
average amount) of workplace phenomena predicts important workplace outcomes. Thus, there is a
need to understand the antecedents of variability-based constructs. In the next section, we describe
the smaller subset of studies (13) that have begun to examine these antecedents (see Table 2),
including the limitations of approaches that have been applied previously. We explain how MELS
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Table 1. Examples of Variability-Based Constructs in Organizational Research.

Differences in the Heterogeneity of the Entities Composing Teams, Business Units, Occupations,
Organizations, or Industries

Strategic consensus The shared understanding of strategic priorities (i.e., agreement) among
managers at the top, middle, or operating levels of the organization
(Kellermanns et al., 2005).

Investor sentiment
agreement

Heterogeneous perceptions of aggregate economic growth among investors
(Cen, Lu, & Yang, 2013).

Competency rating
consensus

Agreement among job incumbents on the ratings of job competencies (Lievens,
Sanchez, Bartram, & Brown, 2010).

Justice climate strength Variability in team members’ justice ratings (Roberson & Williamson, 2012).
Group consensus Shared perceptions and feelings or climates within groups (e.g., job satisfaction;

Lang et al., 2018). Applicable to a variety of cognitive, motivational, and
affective emergent states among group members (Ilgen, Hollenbeck, Johnson,
& Jundt, 2005; Marks, Mathieu, & Zaccaro, 2001).

Leader-member exchange
differentiation

Differentiated exchanges leaders create with subordinates within the same
workgroup (Erdogan & Bauer, 2010; Gooty & Yammarino, 2016; Henderson
et al., 2009; Liden, Erdogan, Wayne, & Sparrowe, 2006).

Occupational heterogeneity Variability in knowledge, skills, abilities, and other competencies of people in the
same occupation (Ployhart, Weekley, & Baughman, 2006; Sitzmann,
Ployhardt, & Kim, 2019).

Team personality/need
dispersion

Variability in team members personalities (Gonzalez-Mulé, DeGeest,
McCormick, Seong, & Brown, 2014) or the need for power, achievement, and
affiliation (Chun & Choi, 2014).

Efficacy dispersion Within-team variability in perceptions of team efficacy (DeRue, Hollenbeck,
Ilgen, & Feltz, 2010).

Pay dispersion Within-team variability in compensation (e.g., among top managers; Carnahan,
Agarwal, & Campbell, 2012; Chin & Semadeni, 2017; Fredrickson, Davis-
Blake, & Sanders, 2010; Jaskiewicz et al., 2017; Lim, 2018; Messersmith,
Guthrie, Ji, & Lee, 2011; Trevor, Reilly, & Gerhart, 2012).

Decision-making
heterogeneity

Variability of group members’ decision-making preferences (Melkonyan & Safra,
2016).

Client heterogeneity Variability in the characteristics of clients served (e.g., patients physical and
psychological characteristics; Chowdhury & Endres, 2010).

Implementation variability Variability in the implementation of organizational changes, human resource
management systems, or other policies and procedures across organizational
subunits (e.g., the implementation of high performance work systems; Pak &
Kim, 2018).

Innovation heterogeneity Within-organization variability in innovation output (e.g., variability in the
forward citations of patents submitted by an organization; Patel, Kohtamäki,
Parida, and Wincent (2015); variability in the innovativeness of subsidiaries,
Figueiredo, 2011).

Performance heterogeneity Within-industry variability in firms’ performance or profitability
(Balasubramanian & Lieberman, 2010; Lenox, Rockart, & Lewin, 2010) or
within-occupation variability in individuals’ job performance (Bidwell & Keller,
2014).

Between-Person, -Team, or -Organization Differences in Variability Over Time or Across Situations

Decision-making consistency Within-person variability in decisions made in the face of similar choice
occasions (Melkonyan & Safra, 2016).

Transfer of training
consistency

Within-person variability in the application of newly acquired knowledge and
skills to the job context (Huang, Ford, & Ryan, 2017).

(continued)
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and heterogeneous variance models address these limitations and expand the potential questions
researchers may address when predicting variability as a substantive construct of interest.

Use and Limitations of Aggregation Approaches for Predicting Differences in Variability

Our review found that researchers commonly calculate and use aggregate measures of variability as
an outcome in single-level regressions or similar analyses. This approach has important limitations,
which researchers can overcome by using multilevel approaches for predicting differences in
variability.

First, this approach allows researchers to utilize only Level 2 predictors because Level 2 outcome
variables (e.g., the standard deviation estimate most commonly used) do not have any Level 1
variability (Leckie et al., 2014). Thus, researchers cannot incorporate Level 1 variables as predictors
of variability-based constructs and instead often create Level 2 versions of Level 1 predictors and
utilize them in a single-level regression (Hofmann, 2002). This approach loses information that is
likely of interest to researchers. In the sections that follow, we demonstrate how the ability to
incorporate Level 1 predictors offers new avenues for organizational researchers.

Second, the aggregation approach does not account for uncertainty in the variability estimates.
The standard deviation or variance of a sample is random. Therefore, there is uncertainty associated
with that statistic. Further, the standard deviation of the variance (i.e., 2s2=

ffiffiffi
n
p

) is potentially much
larger than the standard deviation of the mean (i.e., the standard error of the mean: i.e., s=

ffiffiffi
n
p

;
Pawitan, 2001, p. 59). This uncertainty is important because aggregation approaches treat all varia-
bility outcomes as equally precise regardless of the number of measurements per Level 2 entity (e.g.,
person or group), resulting in an underestimation of sources of variation and therefore inflated Type
I error rates. In contrast, MELS and heterogeneous variance models appropriately weight each Level
2 estimate according to the amount of data at Level 1, thereby resulting in more appropriate variance
estimates and inferences.

Table 1. (continued)

Personality consistency Within-person variability in expression of personality traits or other individual
differences across situations (i.e., more general intraindividual variability,
Dalal et al., 2015; e.g., conscientiousness, Minbashian, Wood, & Beckmann,
2010; sociability and dutifulness, Lievens et al., 2018; mastery goal
orientation, Huang et al., 2017).

Emotional labor consistency Within-person variability in the use of surface acting and deep acting across
situations (over time; Gabriel & Diefendorff, 2015; Scott, Barnes, & Wagner,
2012).

Job satisfaction variability Within-person variability in person-organization and person-job fit perceptions
(Gabriel, Diefendorff, Chandler, Moran, & Greguras, 2014).

Justice variability Within-person stability of fairness over time (Matta, Scott, Colquitt, Koopman,
& Passantino, 2017).

Performance variability Within-person variability of performance over time (Barnes, Reb, & Ang, 2012;
Dalal, Bhave, & Fiset, 2014; Minbashian & Luppino, 2014; Reb & Greguras,
2010); within-business unit (Guo, 2017) or within-firm (Wales, Patel, &
Lumpkin, 2013) variability of performance over time; within-firm variability of
corporate social performance over time (Wang & Choi, 2013), business
acquisition rate or success (Kim, Finkelstein, & Haleblian, 2015; Laamanen &
Keil, 2008), and provision of services to a customer over time (Sriram,
Chintagunta, & Manchanda, 2015).

Turnover volatility Within-firm variability of employee turnover over time (Hausknecht &
Holwerda, 2013).
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Table 2. Prior Organizational Research Predicting Variability-Based Constructs.

Citation Research Description Analysis
Type of
Variability

Fredrickson,
Davis-Blake, and
Sanders (2010)

Examined if the percentage of the
team on the board, variation in
team members stock
ownership, and members’
average tenure predicted
variability of pay among
members of the top
management team.

Fixed effect regression was used
to predict the coefficient of
variation for pay.

Variability within
a team

Lenox, Rockart,
and Lewin
(2010)

Examined if the extent of
interdependencies among firms
predicted variability of firm
profits within an industry.

Mixed (multilevel) model, where
the standard deviation of
Tobin’s q was used as the
outcome.

Variability of
firm profits
within an
industry

Lievens et al.
(2010)

Examined whether aspects of the
occupation (e.g., complexity,
context, work activities)
predicted the agreement (less
variability) in job incumbent
ratings of the job competencies.

Generalizability coefficient
(representing agreement among
raters) predicted by nature of
the occupation in a regression.

Variability in job
incumbents’
ratings

González-Benito,
Aguinis, Boyd,
and Suárez-
González (2012)

Examined if strategic consensus
regarding competitive methods
predicted strategic variability
regarding managers’
perceptions of strategic
priorities (i.e., strategic
consensus regarding objectives).

Distance measure calculated for
each firm and used subsequently
in a structural equation model.

Variability in
managers’
perceptions
within a firm

Roberson and
Williamson
(2012)

Examined if team network density
and self-monitoring behavior
predicted variability in team
members’ perceptions of justice
(i.e., justice climate strength).

Calculated standard deviation of
justice climate perceptions and
used as a dependent variable in a
regression.

Variability within
a team

Scott, Barnes, and
Wagner (2012)

Examined if self-monitoring
predicted emotional labor
variability (for both surface and
deep acting).

Calculated standard deviations for
emotional labor variables over
two weeks for each person and
used that measure to calculate
partial correlations with self-
monitoring.

A person’s
variability
over time

Patel et al. (2015) Examined if entrepreneurial
orientation and absorptive
capacity predicted variability in
forward citations of a patent
approved and/or filed (i.e.,
innovation) within a firm.

Calculated the standard deviation
of the forward citations (after
adjusting for industry, etc.) to
reflect variability and predicted
within a structural equation
modeling framework.

Variability within
a firm

Chin and Semadeni
(2017)

Examined if CEO liberalism
predicted the variability of pay
among members of the top
management team (not
including the CEO).

Generalized estimating equations
(GEE) where the inverse
coefficient of variation for pay
was used as the outcome.

Variability within
a team

Jaskiewicz et al.
(2017)

Examined if the type of firm
ownership (i.e., founder, family,
or later generation owner)

Used aggregate measure of
variation (100 ! the coefficient
of variation for top four

Variability within
a team

(continued)
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Explaining Sources of Variance Versus Predicting Heterogeneous Variances

The use of multilevel models for predicting the location (mean) is common across many areas
in the organizational sciences. These models are often “mixed-effects” models because they
include both fixed and random effects. For example, a random intercept multilevel model (i.e.,
the simplest multilevel model) is a “mixed” model that allows each Level 2 unit to have its own
predicted mean (e.g., Bliese & Ployhart, 2002; Pinheiro & Bates, 2000). Adding fixed or
random effects enable researchers to investigate change in mean-level based on either Level
1 or Level 2 characteristics. For example, it is common for researchers to employ growth

Table 2. (continued)

Citation Research Description Analysis
Type of
Variability

predicted the variability of pay
among members of the top
management team (not
including the CEO).

managers) for total
compensation of four top non-
CEO managers as the outcome
in a regression.

Matta, Scott,
Colquitt,
Koopman, and
Passantino
(2017)

Examined if supervisors’ self-
control predicted variability in
overall justice perceived by
subordinates.

Used multilevel path analysis but
included the standard deviation
of justice perceptions across
time as a Level 2 variable.

A person’s
variability
over time

Lang, Bliese, and de
Voogt (2018)

Examined whether collective
efficacy predicted the trajectory
of consensus in job satisfaction
over time (Study 1) and
whether leaders show different
patterns of consensus than
other group members (Study 2).

Extended a standard multilevel
methodology by examining
residual variances within a
growth model to account for
change in group consensus and
included group and individual-
level predictors to explain the
emergence of greater within-
group agreement over time.

Variability within
a team over
time

Lievens et al.
(2018)

Examined if self-rated self-
monitoring and functional
flexibility predicted variability in
respondents’ answers to a
situational judgment test
examining the traits of
sociability and dutifulness.

Used an IRT variance partitioning
approach. In the second study,
used the within-person
standard deviation of
personality states as the
outcome and predicted it in a
regression using intraindividual
variability on SJT among other
things as a predictor. In a
footnote mentioned using
multilevel modeling approaches
in supplementary analyses, but a
description of the specific
method and results were not
reported.

A person’s
variability
across
situations

Sitzmann,
Ployhardt, and
Kim (2018)

Examined whether aspects of
occupational strength (e.g., task
significance) predicted the
variability of incumbents’
personalities within
occupations.

Used an aggregate measure of
heterogeneity (mean Euclidean
distance, replicated with
standard deviation) in a
structural equation model.

Variability within
an occupation
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models, such as those discussed by Bliese and Ployhart (2002), with data gathered using
experience sampling methods in which participants respond to prompts on many occasions
(Bolger & Laurenceau, 2013). When researchers use these models, the first step involves
variance partitioning (i.e., quantify the amount of variability that exists at higher and lower
levels of analysis) and then subsequently explaining some portion of the variance at each level
(by predicting differential mean levels with variables of interest). The variance partitioning in
these models is the same for everyone in the sample (e.g., one random intercept variance, one
random slope variance, and one residual variance).

The characteristic that differentiates MELS and heterogeneous variance models from traditional
multilevel models is the explicit modeling of variability (i.e., heterogeneous residual variances). The
location side (mean portion) of the model is the same and can be expressed using the notation
popularized by Raudenbush and Bryk (2002). The equation on the scale side (i.e., residual variability
portion) takes a similar form but uses a different notation to make it easier to keep track of which
side of the model the parameter is located. Thus, typical growth models (and other traditional
multilevel models) are a special case of MELS and heterogeneous variance models where the scale
side of the model contains only the fixed intercept, t00. To clarify the difference between these types
of models, see example equations for traditional regression, multilevel, heterogeneous variance, and
MELS models provided in Figure 1 (compare Equation 2 for the traditional multilevel model to
Equation 3 for the heterogeneous variance model and Equation 4 for the MELS model). Figures 2
and 3 further demonstrate this conceptual distinction between explaining sources of variance and

Figure 1. Comparison of regression, multilevel, heterogeneous variance, and mixed-effects location-scale
model equations. The location or mean side of the regression equation is presented in a multilevel form,
although it contains no additional random effects and is therefore not a multilevel model. This notation is used
to facilitate the comparison of the equations across the various model specifications. Note that there is no Level
1 residual term on the scale side of the model (i.e., no e, which is similar to a generalized linear model [e.g.,
logistic regression] that also lacks a Level 1 residual). In MELS and heterogeneous variance models, the log of
the variance (or standard deviation) is used as the outcome to ensure that the predicted variance is
nonnegative.
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predicting heterogeneous variances (i.e., differences in variability). The latter may be used to
operationalize and predict variance-based constructs in the organizational literature.

Multilevel Models for Predicting Heterogeneous Variances

Above we discussed the conceptual differences between traditional multilevel models and multi-
level models for predicting heterogeneous variances. In this section, we describe the notation
presented in Figure 1 for the MELS model. In these descriptions, we use individuals nested within
groups to make the interpretations more concrete. However, these interpretations would be similar
for different nested cross-sectional and longitudinal designs. Also, please note that the interpreta-
tion for each coefficient is the same when the coefficients appear in the other more restricted
models presented in Figure 1.

First, the location (mean) side of the model in Equation 4 (see Figure 1) is just like any other
multilevel model:Yij represents the outcome for individual i nested within group j, Xij represents a
Level 1 predictor variable (centered at the group mean, X :j), Wj represents a Level 2 predictor
(centered at the grand mean, W :). Please note that the predictors do not have to be the same for the
two sides of the model. As usual, b0j and b1j are placeholders for the intercepts and slopes, respec-
tively, and are defined in terms of fixed and random effects (i.e., g’s and u’s). For interpretation
purposes, individual-level (Level 1) predictors predict differential mean outcome values between
individuals (that could vary across groups depending on random slopes), whereas group-level (Level
2) variables predict differential mean outcomes between groups—each unit increase in a predictor
with a positive fixed effect will result in an increase in the average amount of the outcome.

Figure 2. Regression plot illustrating regression assumptions. The left panel contains a typical regression with a
positive slope and a homogenous variance. Yi * N(bxi, s

2) is the common notation used to indicate that Yi is
normally distributed with a mean that depends upon the individual’s xi value and a variance that is constant (s2).
The right panel displays a heterogeneous variance model where the mean does not change over time depending
upon x. The Yi * N(0, txi) notation indicates that the mean is zero for everyone in the sample and the
variability depends upon the xi value.
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Second, the scale (variability) side of the MELS model is a log-linear model in which the log of
the residual variance or standard deviation (we use the standard deviation parameterization) is
predicted by a linear function using predictors of interest. The log-linear model is used to ensure
that the predicted standard deviation is positive. As shown on the scale side of Equation 4, each
group (j) and individual within that group (i) has its own residual standard deviation estima-
te,seij

(i.e., heterogeneous). The interpretation of the model effects on the scale side is similar to
the interpretation of the model effects on the location side (assuming the interpretation is made on
the log standard deviation scale). Here,seij

denotes the residual standard deviation for a particular
individual in a particular group, a0j and a1j are placeholders for the intercepts and slopes respectively
that are defined by the fixed (i.e., t’s) and random (i.e., n’s) effects. For interpretation purposes,
individual-level (Level 1) predictors predict differential within-group variability between individ-
uals, whereas group-level (Level 2) predictors predict differential variability between groups—each
unit increase in a predictor with a positive fixed effect will result in increased (log) variability
indicating more variable, or less consistent, group members.

Finally, this model generally assumes all random effects n’s and u’s are normally distributed with
means of 0 and random effect standard deviations suq

and snq
, respectively. Further, covariances

Figure 3. Conceptual figure depicting predicted variances for two different groups in a MELS model. The black
circles represent three different predictors (two at Level 2 and one at Level 1). The other circles represent the
variance partitioning between Level 1 (white) and Level 2 (gray). The overlap between circles represents the
variance explained. The size of the circle reflects group specific residual variance estimates. Group 2 has less
random intercept variance (top circle) but more random slope (middle circle) and Level 1 (bottom circle)
variance as compared to Group 1. In a traditional random slope multilevel model there are only three variance
components for everyone in the entire sample. In other words, the size of the circles would be the same for all
groups. Although not depicted here, the same principles apply to individuals.
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between all location and scale random effects can be estimated (e.g., suq;ns
Þ. The examination of

covariances allows researchers to answer questions such as do groups that have higher means also
tend to have smaller within-group residual standard deviations. Equation 5 contains the assumptions
regarding the distribution of the random effects (i.e., multivariate normal with a 0 mean column
vector, and an unstructured covariance matrix that allows all possible covariances between the
random effects). Allowing the random effects to covary across sides of the model is a unique aspect
of the MELS model that cannot be estimated using the aggregation approach described previously.
We provide a full interpretation of these effects in the supplemental material. Please note that the
parameterization utilizes standard deviations and correlations as opposed to variances and
covariances.
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If the scale side of the model contains fixed, but not random, effects of predictors (i.e., no n0j or
n1j), then the model is considered to be a heterogeneous variance model. As described previously,
heterogeneous variance models are a restricted version of the MELS model (compare Equation 3 to
Equation 4 in Figure 1). This comparison is similar to how linear regression is a restricted version of
multilevel models. Heterogeneous variance models, by their inclusion of only fixed effects on the
scale side, predict variances that differ for systematic reasons (e.g., males are more variable than
females). Recently, Lang et al. (2018) demonstrated the use of an extended multilevel model for
heterogeneous variances to predict the emergence of within-group consensus over time. In their
article, they estimated several models with random slopes on the location side and the fixed effect of
time on the scale side. Some of these models included additional moderators of the effect of time on
the scale side (e.g., leadership status and group readiness).

We build on this work by Lang and colleagues (2018) by demonstrating how random slopes may
also be included on the scale side of the model. This extension is important because, in a different
context, Leckie et al. (2014) and Walters et al. (2018) found that ignoring random effects on the scale
side can lead to inflated Type I error rates when predicting heterogeneous within-group variances,
specifically when testing hypotheses regarding Level 2 variables. Thus, heterogeneous variance
models are susceptible to inflated Type I error rates if additional random effects are erroneously
omitted. We want to emphasize that we are not saying the application of heterogeneous variance
models is wrong, but rather using these models assumes a systematically varying cross-level inter-
action (i.e., the variances are heterogeneous due to time as well as other fixed effect interaction
terms; Davidian & Giltinan, 1995; Hoffman, 2007; Raudenbush & Bryk, 2002). It is possible to test
this assumption by examining the scale-model random effects in the more general MELS models.

A Bayesian Approach

Several years ago, Kruschke, Aguinis, and Joo (2012) outlined a case for the need to apply Bayesian
methods in the organizational sciences (see Appendix B for a brief introduction to Bayesian statis-
tics). Kruschke et al. recommend five steps researchers should follow when presenting the findings
of a Bayesian analysis. We use these step-by-step guidelines as we make a case for the use of
Bayesian methods to estimate MELS and heterogeneous variance models and present the results
from our illustrative examples.

First, it is important for researchers to motivate the use of Bayesian methods. While researchers
may estimate simple versions of multilevel models predicting heterogeneous variances using
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maximum likelihood estimation, convergence issues are likely to occur as the number of random
effects increase on the location and scale sides of the model (Asparouhov & Muthén, 2016). Thus,
we use Bayesian analysis to “open the door to extensive new realms of modeling possibilities that
were previously inaccessible” (Kruschke et al., 2012, p. 723). In other words, Bayesian approaches
allow researchers to estimate complex models that would be extremely difficult if not impossible to
estimate using frequentist approaches (e.g., MELS models that have random intercepts and slopes on
both the location and scale sides of the model).

Second, researchers should describe the model and its parameters in detail. We provide this
information for both of our illustrative examples in Appendices D and E as well as in the supple-
mental material. Third, researchers should justify the use of the prior in their analysis. The priors we
used were intended to be uninformed (i.e., should not affect the posterior distribution). Thus, for
each example, we justify the selection of our prior by performing a sensitivity analysis to demon-
strate that the use of different priors did not affect the results.

Fourth, Kruschke et al. (2012) encouraged researchers to describe the Markov chain Monte Carlo
(MCMC) process in detail (see Appendix C). The models are estimated using Stan (Carpenter et al.,
2017) through the brms R package (Bürkner, 2017). Stan is a powerful probabilistic programming
language that allows researchers to estimate many different types of complex models. The Stan
programming language is similar to other open-source Bayesian software like OpenBUGS (Spie-
gelhalter, Thomas, Best, & Lunn, 2007) or JAGS (Plummer, 2013). However, working with the Stan
code directly is more difficult than working with these other software programs or typical R
packages. The brms package was written to reduce this burden (Bürkner, 2017) and may be used
by researchers to generate efficient Stan code. The brms package requests that you provide code that
is similar to typical multilevel model code in R (e.g., see the lme4 R package; Bates, Maechler,
Bolker, & Walker, 2015). The brms code is then translated into the Stan language (i.e., brms creates
the Stan code as well as the Stan data file).

Estimating a Bayesian MELS or heterogeneous variance model in Stan offers, at least, two
important advantages over frequentist approaches. First, these models can partition the variability
multiple times on both the location and the scale side of the model. Thus, inevitably, some of the
variance components are going to become small and likely inestimable using a frequentist frame-
work (Asparouhov & Muthén, 2016). As mentioned previously, a Bayesian approach allows
researchers to estimate models with small variance components. Second, Stan uses a different sort
of Bayesian sampling procedure (i.e., Hamiltonian Monte Carlo estimation, specifically the
No-U-Turn Sampler; Hoffman & Gelman, 2014; see Appendix C for additional explanation)
that is more efficient than Metropolis-Hastings sampling and more flexible than Gibbs sampling
(i.e., other commonly used sampling procedures in Bayesian analyses).

In addition to describing this estimation procedure, researchers should provide evidence that the
sampler has converged and adequately sampled throughout the posterior distribution (Kruschke
et al., 2012). For each example, we provide evidence that the different starting values (i.e., different
chains) converge to the same distribution and that autocorrelation is not playing too large of a role in
the results. Fifth and finally, for each example, we provide detailed interpretations of the posterior
distribution. This step-by-step process should serve as a guide for researchers estimating Bayesian
MELS and heterogeneous variance models.

Illustrative Examples

In this section, we provide illustrative examples for nested cross-sectional and longitudinal designs.
These examples utilize simulated data (see Appendix D for details regarding data generation) to
demonstrate the sorts of research questions that can be addressed using MELS and heterogeneous
variance models. Given that the purpose of this article is to demonstrate the flexibility of these
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methods, the illustrative examples involve relatively complex models that incorporate random
slopes. In Appendix E, we provide model alternatives that gradually increase in complexity from
an empty linear regression model to a MELS model with random slopes on both sides of the model.
These buildup analyses are presented using general notation (i.e., not in the context of the illustrative
examples). In the remainder of this section, we briefly describe illustrative research questions and
then present the analysis and results as would be typical in a published empirical study. In the
supplemental material, we provide the code needed to generate the data that serve as the basis for our
illustrative examples as well as the code needed to analyze these data. We also provide interpreta-
tions of all parameter estimates (see “Readme.doc” for the intended use of each file). The level of
detail provided in the supplemental material would not typically be provided in published articles;
this information is meant to aid researchers as they move from output interpretation to writing up the
results of their own study.

Nested Cross-Sectional Example: LMX Differentiation

This first example illustrates how the MELS model can be used with nested cross-sectional data to
provide new insights into the nature of leader membership exchange (LMX) differentiation. It is
common for supervisors to develop different quality relationships with the subordinates they super-
vise (i.e., who are nested within the leader’s group) resulting in a pattern of LMX that can be
described by central tendency (e.g., the mean), variation (e.g., the standard deviation), and relative
position (i.e., how does an individual’s LMX compare to others with the same leader; Martin,
Thomas, Legood, & Dello Russo, 2018). The MELS model allows researchers to predict these three
properties in a single model, while appropriately considering model uncertainty and avoiding the use
of aggregation and its associated problems. In this illustrative example, we consider the effects of
transformational leadership (i.e., a Level 2 predictor) and a leader’s perceived similarity with each
subordinate (i.e., a Level 1 predictor) on LMX reported by subordinates.

Previous research has found that perceived similarity is predictive of higher-quality LMX rela-
tionships (Liden, Wayne, & Stilwell, 1993). As a Level 1 variable, perceived similarity can have
between, within (relative), and contextual effects (Enders & Tofighi, 2007; Kreft, De Leeuw, &
Aiken, 1995) on either the location or the scale side of the model.2 The within-group level of the
model (i.e., Level 1 or subordinate level), which applies to both the location side and the scale side of
the model, predicts the relative position piece of the LMX outcomes (see Equation D1 in Appendix
D). In this example, g10 denotes the relative similarity effect on the location side of the model, and
t10 denotes the same effect on the scale side.

Henderson et al. (2009) proposed that transformational leadership may combine with perceived
similarity to predict LMX differentiation. They suggest that more transformational leaders (e.g.,
Leader A in Figure 4) will be less affected by perceived relative similarity. Specifically, we expect
that more transformational leaders will have higher mean LMX ratings and that their LMX ratings
will be less variable regardless of perceived similarity. In contrast, we hypothesize that less trans-
formational leaders will have lower mean LMX and that their ratings will be more variable (i.e., see
differentiation or distance between the data and line for the subordinates who report to Leader B in
Figure 4). For these leaders, relative similarity will be more likely to affect relative LMX ratings in
terms of the predicted mean LMX as well as in terms of the variation around that predicted mean.
Leaders low on transformational leadership will have higher and more consistent LMX with similar
group members. These effects manifest themselves in Figure 4 for Leader B as a positive slope of
relative similarity on relative LMX and a shrinking distance between the x symbols and the pre-
dicted mean (demarked by the line) as similarity increases. We examine these assertions in our
illustrative analysis.
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Analysis and Results

Prior Justification. To assess the sensitivity of the inferences to the prior, we utilized multiple sets of
priors (i.e., two noninformative or vague options and one informed option). The results did not vary
greatly. Thus, we present the results using the default uninformed priors. We provide the specific
priors used in these analyses below and refer readers to McElreath (2016) and Bürkner (2017) for
more information regarding the choice of priors. One advantage of using brms with uninformed
priors is that the user does not have to specify the priors. As a default, priors designed not to
influence the final results are incorporated into the analysis. In the supplemental material, we
illustrate that in less complex models where both the frequentist and Bayesian models are estimated,
the results match to two or three decimal places when using similar priors. Thus, these priors are not
affecting the final results. In this analysis, improper flat priors were used for the fixed effects (i.e.,
the distribution does not integrate to one, and every possible parameter value is treated as equally
likely; Bürkner, 2017). The default prior of a half Student-t distribution with 3 degrees of freedom
and a location and scale parameter of 0 and 10 respectively was used for the standard deviations of
the random effects. The prior for the 4 ! 4 correlation matrix is the LKJcorr (1) (Lewandowski,
Kurowicka, & Joe, 2009), which is a flat prior over all valid correlation matrices. The analysis model
is the same as the model that was used to generate the data (see Appendix D).

Model Convergence. Before interpreting the results from the MCMC process, we assessed whether the
sampler converged and adequately sampled throughout the posterior distribution. If this is not the
case, then the results cannot be interpreted. Two potential problems that could prohibit reaching
these goals are start value sensitivity and high autocorrelation among the sampled parameter

Figure 4. Depiction of hypothetical leaders who differ in transformational leadership. The two lines depicted in
this figure represent different leaders (A & B). The location of the subordinates (depicted by o) around Leader
A’s line (who is high in transformational leadership) indicates that this leader has high and consistent leader-
member exchange (LMX) relationships with subordinates regardless of the level of similarity between the
leader and the subordinate. Consistency is indicated by the equal distance of the o symbols from the line. The
location of the subordinates (depicted by x) around Leader B’s line (who is low in transformational leadership)
indicates that LMX for this leader depends upon similarity such that the leader has higher LMX with subor-
dinates who are more similar to the leader. Further, the distance of the xs from the line indicates that
subordinates who are more similar to the leader are treated more consistently.
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estimates. Like any estimation or sampling procedure, the MCMC sampler used by Stan (i.e., the
No-U-Turn Sampler) needs starting values; thus, four chains with different starting values are used
(see Appendix B for more information about Bayesian in general and Appendix C for the No-U-Turn
Sampler in particular). Moreover, to ensure that potentially poor starting values did not influence the
posterior distribution estimates, many of the initial estimates were discarded (i.e., the first half of the
5,000 samples taken from each chain in this study, 2500). The potential scale reduction factorðR̂Þ
was used to assess whether the chains converged to the same posterior distribution; R̂ was less than
1.05 for all parameters. Thus, the chains are considered to have converged (Asparouhov & Muthén,
2010; see Table 3).

To assess whether autocorrelation is prohibiting adequate sampling from the entire posterior
distribution, we investigated two sources of information (i.e., trace plots and the effective sample
size). The trace plots displaying the sampled estimates for each iteration have a slope of approxi-
mately zero; thus, there is no systematic pattern to the autocorrelation (Figure 5). In other words, the
plot is indicative of random noise. Additionally, the effective sample size reveals that autocorrela-
tion was not problematic as the ratio of the number of effective samples to the total number of
samples taken was greater than .1 (Kruschke, 2015). An additional diagnostic that supports the claim
that the sampler performed well is that the posterior predictive plot (Figure 6) also revealed that the
model reproduced the data indicating adequate model “fit.”

The final indication that the model is performing as expected is only available because we
simulated the data. The credible intervals contained the data-generating parameters for all the
parameters except for the location intercept. Thus, the 95% credible intervals contained the data-
generating (true) value for 19 of the 20 estimated parameters (i.e., 95%). Also note that the model
was able to detect all nonzero fixed effects and the nonzero random effect standard deviations; the
ability to detect nonzero effects is important, because having credible intervals that contain all
parameters may be an indication that the intervals are too wide. This does not appear to be the
case. However, there were some effects that the model did not detect; none of the nonzero correla-
tions between the scale model random effects were significant. Thus, a larger sample size is needed
to detect these correlations.

Interpretation of Posterior Distribution. Both the mean and the variance sides of the model contain the
similarity-by-transformational leadership cross-level interaction, the associated simple main effects,
and the Level 2 similarity effect. The location intercept ĝ00 ¼ %:05; CI(–.11, –.00) is the predicted
mean value when all predictors are zero (i.e., at the group mean for perceived similarity, in a group that
has an average amount of similarity, and has a leader with an average amount of transformational
leadership). The simple main effect of transformational leadership indicates that when similarity is at
the group mean, a one-unit increase in transformational leadership results in an expected .37 increase
in the LMX mean, ĝ02 ¼ :37; CI(.32, .42). The Level 1 similarity effect on the location side of the
model is estimated to be ĝ10 ¼ :57, CI(.51, .63) indicating that subordinates with a leader who has an
average amount of transformational leadership are predicted to have a .57 unit mean increase in
LMX for each unit increase in similarity. This effect is weakened by the interaction term
ĝ11 ¼ %:27, CI(–.33, –.21) (see Figure 7). This effect is interpreted as for each additional unit increase
in transformational leadership the effect of similarity on the LMX mean becomes smaller by .27.

The scale side of the model is interpreted similarly. The scale intercept, t̂00 ¼ %:14, CI(–.19, –.10),
is the predicted log residual standard deviation for an employee who is at the group mean for perceived
similarity, is in a group that has an average amount of similarity, and has a leader with an average
amount of transformational leadership. In other words, like any intercept, t̂00 represents the predicted
value when all of the predictors are zero. The simple main effect of transformational leadership
indicates that when similarity is at the group mean, the effect of a one-unit increase
in transformational leadership results in a .07 decrease in LMX log residual standard deviation,
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t̂02 ¼ –.07, CI(–.10, –.03). In other words, transformational leaders tend to have more consistent (or less
variable) LMX relationships with their subordinates. The similarity effect t̂10 ¼ -.17, CI(–.22, –.12)
indicates that when transformational leadership is at its grand mean, the effect of a one-unit increase in
similarity is expected to decrease the log residual LMX standard deviation by .17. The cross-level
interaction effect weakens the similarity effect by .10, CI (.06, .15). As seen in Figure 8, the slope of
similarity decreases (i.e., less negative) for those higher in transformational leadership.

Table 3. Random and Fixed Effect Output for the Nested Cross-Sectional Leader-Member Exchange Differ-
entiation Example.

Random Effect Standard
Deviations and Correlations brms Output Label m̂ ŝ Q.025

True
Value Q.975 Cover

Effective
Sample

Size

ŝu0 sd(Intercept) 0.25 0.03 0.18 0.23 0.32 1 3567
ŝu1 sd(similarL1_groupmc) 0.22 0.04 0.14 0.22 0.30 1 2775
ŝn0 sd(sigma_Intercept) 0.09 0.04 0.01 0.10 0.17 1 1075
ŝn1 sd(sigma_similarL1_groupmc) 0.05 0.03 0.00 0.10 0.12 1 3019
ŝu0 ;u1 cor(Intercept,

similarL1_groupmc)
-0.24 0.19 -0.60 -0.30 0.16 1 2577

ŝu0 ;n0 cor(Intercept, sigma_Intercept) 0.02 0.32 -0.62 -0.30 0.65 1 4394
ŝu1 ;n0 cor(similarL1_groupmc,

sigma_Intercept)
0.18 0.36 -0.60 0.30 0.81 1 2918

ŝu0 ;n1 cor(Intercept, sigma_similarL1_
groupmc)

0.25 0.41 -0.64 0.00 0.88 1 6928

ŝu1 ;n1 cor(similarL1_groupmc,
sigma_similarL1_groupmc)

-0.06 0.42 -0.81 -0.30 0.76 1 8784

ŝno ;n1 cor(sigma_Intercept,
sigma_similarL1_groupmc)

0.05 0.43 -0.78 -0.30 0.82 1 6853

Fixed or Population-Level
Effects brms Output Label m̂ ŝ Q.025

True
Value Q.975 Cover

Effective
Sample

Size

ĝ00 Location Intercept Intercept -0.05 0.03 -0.11 0.00 -0.00 0 8890
t̂00 Scale Intercept sigma_Intercept -0.14 0.02 -0.19 -0.14 -0.10 1 3980
ĝ10 Similarity location similar_groupmc 0.57 0.03 0.51 0.56 0.63 1 9411
ĝ01 Similarity Level-2

location
similarL2 0.64 0.06 0.53 0.56 0.76 1 9743

ĝ02 Transformational
location

transform_grandmc 0.37 0.03 0.32 0.37 0.42 1 8897

ĝ11 Location Interaction similarL1_groupmc: transform_
grandmc

-0.27 0.03 -0.33 -0.28 -0.21 1 9926

t̂10 Similarity scale sigma_similarL1_groupmc -0.17 0.03 -0.22 -0.15 -0.12 1 6364
t̂01 Similarity Level-2 scale sigma_similarL2 -0.16 0.04 -0.25 -0.15 -0.07 1 12878
t̂02 Transformational scale sigma_transform_grandmc -0.07 0.02 -0.10 -0.10 -0.03 1 9830
t̂11 Scale Interaction sigma_similarL1_groupmc:

transform_grandmc
0.10 0.02 0.06 0.08 0.15 1 10634

Note: The brms Output Label would not typically be provided in this kind of table; however, we provide it here so that readers
can easily link the output from the analysis to the information presented in the table. m̂ is the posterior mean, ŝ is the posterior
standard deviation, Q.025 is the .025 quantile of the posterior distribution or the lower limit of the 95% credible interval, Q.975
is the .975 quantile of the posterior distribution or the upper limit of the 95% credible interval. True value refers to the value that
was used to generate the data. Effective sample size is an estimate of the amount of independent information in the auto-
correlated samples. R̂ is the square root of the total variance divided by the within chain variance and is equal to 1.00 for all
parameter estimates. Coverage is whether the quantiles contain the true value – 1 indicates that the interval does contain the
true value. ss correspond to standard deviation when they contain only a single subscript. For example, ŝv1 is the standard
deviation of the scale side random slope for similarity. ss with double subscripts are used to indicate correlations. For example,
ŝu1 ;n1 is the estimated correlation between the location side and the scale side random slopes.
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In addition to interpreting the scale side of the model on the log metric, the model can also
be interpreted in terms of standard deviations (Lang et al., 2018). These standard deviations are
the predicted residual standard deviation (i.e., square root of the residual variance) given
specific predictor values. Computing the predicted standard deviation is performed by expo-
nentiating the coefficients; the standard deviations can then be converted into a percentage
change that provides a meaningful effect size metric. See Appendix F for a more detailed
explanation for this calculation. For example, assuming average similarity (i.e., both the Level
2 and Level 1 predictor values are zero) the predicted standard deviation for a group with a
leader that is one unit above average on transformational leadership is calculated as e(–.14 – .07).
Thus, their predicted standard deviation value is approximately .81. If the leader had an average
level of transformational leadership, then the predicted value would be e-.14, which is approx-
imately .87. The percentage change is computed as (.81 – .87)/.87, which is approximately –.07
or a 7% decrease. Thus, for a one-unit increase in transformational leadership the standard
deviation of LMX is reduced by seven percent.

A similar interpretation could be made for the similarity effect for those in a group with a leader
that has an average level of transformational leadership and an average group similarity. A one-unit
increase in perceived similarity results in a [(e–.14 – .17 – e–.14)/e–.14] ! 100 ¼ %15.63% decrease in
the predicted standard deviation of LMX. The percentage change is smaller for more transforma-
tional leaders. Further, Figures 8 and 9 demonstrate how the slope for similarity as a predictor
becomes smaller as transformational leadership increases.

Figure 6. Posterior predictive plot for the nested cross-sectional leader-member exchange differentiation
example. The observed data are in black, and the data generated from the model are in gray.
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In summary, LMX relationship quality is affected less by perceived similarity when leaders are
higher in transformational leadership. In terms of central tendency, a positive simple main effect of
relative similarity (i.e., g10) indicates that those with relatively more similarity are expected to have
higher mean levels of LMX, but that effect decreases as transformational leadership increases. In
terms of variation, relatively high similarity results in more consistent LMX relationships. This
effect decreases as transformational leadership increases, indicating that transformational leaders
treat subordinates consistently regardless of similarity. Groups with similar members have higher
mean levels of LMX and less differentiation in LMX ratings.

Longitudinal Example: Between Firm Performance Variability

This second example illustrates how a heterogeneous variance model could be used with long-
itudinal data to provide new insights into between-firm performance variability differences
based on the strategy enacted by different firms. Imitation has traditionally been assumed to
reduce between firm performance heterogeneity in an industry. However, Posen and Martignoni
(2018) challenged that assumption with a computational model that illustrates the conditions in
which imitation can increase between firm performance heterogeneity. They theorize that due
to limited information, imitating firms will be unable to duplicate the desired strategy com-
pletely and obtain the desired performance. Instead, “copying” firms will have to engage in
post-imitation learning where the initial imitation strategy is adjusted. Firms may vary widely

Figure 7. Cross-level interaction plot demonstrating how transformational leadership moderates the effect of
similarity on leader-member exchange for the location side of the model (i.e., the predicted mean). The bands
reflect the 95% confidence interval.
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in their post-imitation learning ability. Thus, imitation results in both an increased likelihood of
achieving the desired performance and an increased likelihood of performing far worse. Thus,
there will be increased between-firm performance variability overtime when firms in an indus-
try adopt an imitation strategy.

The data generated in this hypothetical example are meant to emulate monthly performance data
across a fiscal year (see Appendix D for details). Thus, time is nested within firm, and each firm is
measured on 12 equally spaced occasions. We compare an “imitator” set of firms to a “business as
usual” set of firms (i.e., those that continue to perform their preexisting strategies). The outcome is
defined generically as firm performance. In terms of heterogeneous variance models, this specific
model contains a cross-level interaction on the location side (i.e., the same model as seen in the
nested cross-sectional example) and a heterogeneous pattern of Level 2 covariance matrices (i.e.,
covariance matrices that are systematically varying due to the strategy adopted). The easiest way to
estimate this model that allows us to use brms (instead of utilizing Stan directly) is to employ a
multiple group approach where each group (i.e., imitators versus business as usual) is allowed to
have its own covariance matrix. This approach is similar to some of the approaches described by
Kuppens and Yzerbyt (2014). As previously stated, there is a random intercept and linear slope for
time as well as their covariance on the location side of the model. In other words, the model allows
for differences in terms of initial firm performance (i.e., at the beginning of the fiscal year) and also
differences in terms of how much they grow from month to month. The heterogeneous between-
group covariance matrices are based on the following rationale.

Figure 8. Cross-level interaction plot demonstrating how transformational leadership moderates the effect of
similarity on leader-member exchange for the scale side of the model. This plot presents the results for the log
residual standard deviation.
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The decision to imitate the industry leader may be a radical change from the existing practices,
and the decision-makers in a firm are likely to be resistant to such radical forms of change. This
drastic step would not be taken unless the firm is performing poorly. Based on this rationale, at
the beginning of the fiscal year, the imitating firms are hypothesized to have consistent poor
performance (i.e., a smaller between-group variability). The location slope variability is
hypothesized to be larger in the imitating firms for reasons described previously. Finally, the
correlation (i.e., standardized covariance) between the intercept and slope is generated to be
larger in the imitation group than the business as usual group. This hypothesis is based on the
rationale that very poor initial performance is expected to be associated with a lack of resources
or ability to compete in the industry. In other words, no matter what sort of strategy they
choose, they are unlikely to succeed.

Analysis and Results

Prior Justification. As in the first illustrative example, the analysis model is the same as the data-
generating model, and we use noninformative default priors. The default noninformative priors for
the fixed effects are improper (i.e., the distribution does not integrate to one) flat priors (Bürkner,
2017). The standard deviations of the random effects in brms have a default prior of a half student-t
distribution with 3 degrees of freedom and a location and scale parameter of 0 and 10 respectively.
The prior for each of the 2 ! 2 correlation matrices is the LKJcorr (1) (Lewandowski et al., 2009),
which is a flat prior over all valid correlation matrices.

Figure 9. Cross-level interaction plot demonstrating how transformational leadership moderates the effect of
similarity on leader-member exchange for the scale side of the model. This plot is rescaled to represent the
residual standard deviation.
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Model Convergence. The convergence diagnostics of R̂ being less than 1.05 for all the parameters
estimates suggest that the sampler has converged (see Table 4). The effective sample size ratio computed
as the number of effective samples divided by the total number of samples (i.e., neff/10,000) being larger
than .1 or neff > 1,000 for all the parameters suggests that autocorrelation among the sampled estimates is
not causing the sampling procedure to get stuck in any portion of the posterior (see Table 4). The trace
plots (Figure 10) indicate that there are no problems with autocorrelation because the slope of those lines
is zero and the plots are indicative of random noise. Finally, the posterior predictive plot (Figure 11) also
reveals that the model reproduces the data indicating that the model “fits” the data. The final indication
that the model is performing as expected is only available because we simulated the data. The credible
intervals contained the data-generating parameters for all the parameters.

Interpretation of Posterior Distribution. The interpretation for the location side of the model is the same
as a typical multilevel model with a cross-level interaction. The only nonzero effect in this example

Figure 10. Density and trace plot for the Markov chain Monte Carlo samples for the longitudinal between firm
performance variability example.
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was the simple main effect of being an imitator. In line with the first, hypothesis, at the beginning of
the study, the imitators are predicted to perform worse than the business as usual condition,
ĝ01 ¼ %:91;CI (–1.19, –.62), see Figure 12. The scale side of the model in this example is incorpo-
rated through a multigroup analysis. In this example, the variability differences between the groups
are of primary substantive interest. As seen in Table 4, the intercept variability is smaller (32.19%
smaller; [.99 – 1.46]/1.46) for the imitator group and slope variability is larger (73.53% larger; [1.77
– 1.02]/1.02). One-tailed hypothesis tests also reveal that the intercept variability is smaller in the
imitator group and that the slope variability is larger (i.e., the credible interval of their difference did
not contain zero; see Table 5). Support for the hypothesized correlation difference was not found,
because the credible interval contained zero. Thus, these results adhered to our expectations regard-
ing the standard deviations but not for the correlations. At the beginning of the study, the imitators
performed consistently worse. Throughout the year some of the firms improved substantially, while
others did not (see the relatively large slope variability in Figure 13).

Discussion

Interest in predicting variance-based constructs is increasing among organizational researchers.
Lang et al. (2018) recently illustrated the use of a multilevel model to predict changes in consensus
(agreement) among members of a group over time. We build upon this first application of multilevel
models for predicting heterogeneous residual variances in the organizational sciences by highlight-
ing the flexible nature of MELS and heterogeneous variance models. Researchers can utilize these
models in both micro and macro organizational research with different designs (nested cross-
sectional or longitudinal) to model different portions of the variability (within- or between-group
variability). Below we summarize the advantages of using the most general MELS models.

Table 4. Fixed and Random Effect Output for Longitudinal Between Firm Performance Variability Example.

brms Output Label m̂ ŝ Q.025

True
Value Q.975 coverage

Effective
Sample

Size

Random ŝu0 Control sd(Intercept: strat0) 1.46 0.10 1.27 1.41 1.65 1 6251
ŝu1 Control sd(time: strat0) 1.02 0.05 0.93 1.00 1.11 1 4378
ŝu0 Imitator sd(Intercept: strat1) .99 0.10 0.81 1.00 1.18 1 4303
ŝu1 Imitator sd(time: strat1) 1.77 0.08 1.62 1.73 1.94 1 3629

ŝu0 ;u1 Control cor(Intercept: strat0,
time: strat0)

0.41 0.07 0.26 0.30 0.54 1 1400

ŝu0 ;u1 Imitator cor(Intercept: strat1,
time: strat1)

0.55 0.08 0.39 0.50 0.71 1 1616

seij sigma 1.89 .02 1.85 1.90 1.93 1 11125
Fixed ĝ00 Location Intercept Intercept 0.00 0.11 -0.22 0 0.23 1 8965

ĝ10 Location Time time -0.05 0.06 -0.17 0 0.08 1 4179
ĝ01 Location Imitator strat -0.91 0.15 -1.19 -1.00 -0.62 1 9244
ĝ11 Location Interaction time: strat 0.19 0.13 -0.08 0 0.44 1 5423

Note: The brms output label would not typically be provided in this kind of table; however, we provide it here so that readers
can easily link the output from the analysis to the information presented in the table. m̂ is the posterior mean, ŝ is the
posterior standard deviation, Q.025 is the .025 quantile of the posterior distribution or the lower limit of the 95% credible
interval, Q.975 is the .975 quantile of the posterior distribution or the upper limit of the 95% credible interval. True value
refers to the value that was used to generate the data. Effective sample size is an estimate of the amount of independent
information in the autocorrelated samples. R̂ is the square root of the total variance divided by the within chain variance and
is equal to 1.00 for all parameter estimates. Coverage is whether the quantiles contain the true value – 1 indicates that the
interval does contain the true value. ss correspond to standard deviation when they contain only a single subscript. For
example, ŝu1 is the standard deviation of the location side random slope for similarity. ss with double subscripts are used to
indicate correlations. For example, ŝu0 ;u11 is the estimated correlation between random intercepts and slopes.
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Advantages of Using MELS

The MELS model offers several statistical advantages over other approaches, including heteroge-
neous variance models. First, by including random effects (particularly the random intercept on the
scale side of the model), it is possible for researchers to test the assumption that all Level 2 units have
the same amount of within-group/person variability (i.e., homogeneous variances) and avoid inflated
Type I error rates (Leckie et al., 2014; Walters et al., 2018). Moreover, this model allows researchers
to avoid the limitations of aggregation (i.e., computing a standard deviation for each group and
predicting it in a single level regression) that include the inability to include Level 1 predictors and
disregarding uncertainty in the aggregated variability estimates. This uncertainty should be and is
accounted for when the data are analyzed with the MELS model.

As mentioned previously, applying MELS models to predict a construct of substantive interest
increases the types of research questions that researchers can address. To this point, organizational
researchers have predominately focused on hypotheses about the amount (mean) of responses.
However, researchers should consider whether there are sound theoretical reasons to propose
hypotheses aimed at predicting variability. Our illustrative example using nested cross-sectional
LMX data exemplifies the types of questions that can be addressed with multilevel models but are
not possible to examine using an aggregation approach. In the example, cross-level interaction
research questions with random slopes for both the mean and the residual standard deviation were
addressed using data that were generated based upon a substantive example. In the context of LMX
and LMX differentiation, perceived similarity was allowed to have random slopes when predicting
LMX mean (location) and LMX differentiation (scale); perceived similarity was also allowed to
have Level 2 effects on both sides of the model. The effect of perceived similarity was qualified by
transformational leadership as a moderator.

Figure 11. Posterior predictive plot for the longitudinal between firm performance variability example. Note
that the observed data are in black and the data generated from the model are in gray.
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Researchers may also examine questions that consider the amount (mean) and the variability in
combination. For example, researchers studying the results of an intervention may find that a
particular treatment not only increases the mean of a construct (e.g., employee wellbeing) but also
decreases the variability of ratings over time. As another example, researchers might propose that
the intervention treatment group would start with a mix (high variability) in wellbeing scores, but
over time, all individuals in the treatment group would both improve and become more homogenous.
In contrast, a less advantageous treatment might increase the mean, but may also increase the
variability. In this case, although on average wellbeing may be improving, the results also suggest
that the treatment is creating a disparity between people. In other words, the treatment works for
some but not for others. This finding would be similar to the results of the second illustrative

Figure 12. Cross-level interaction plot demonstrating how strategy moderates the change in average per-
formance over time. The shaded regions or bands reflect the 95% confidence interval.

Table 5. Variability Magnitude Hypotheses.

Hypothesis m̂diff ŝdiff Q.05 Q.95

ŝu0 Control – ŝu0 Imitators > 0 0.47 0.15 0.25 1
ŝu1 Control – ŝu1 Imitators < 0 –0.75 0.09 –1 –0.60
ŝu0;u1 Control – ŝu0;u1 Imitators < 0 –0.15 0.11 –1 0.03

Note: m̂diff is the posterior mean of the differences between the two estimates; ŝdiff is the standard deviation of the difference.
These are one-sided confidence intervals. Thus, only one side of the credible interval is of interest. When evaluating a less
than hypothesis only the upper limit is needed, and when evaluating a greater than hypothesis only the lower limit is needed.
Note that the credible intervals do not include zero for the variances but do for correlation comparison.
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example examining firm performance. The ability to predict the mean and variability in the same
model makes it possible to test these sorts of combination hypotheses.

Practical Recommendations

Bayesian estimation is appropriate and likely necessary when estimating complex MELS models
because of the large number of random effects. The Bayesian approach, in conjunction with brms
(Bürkner, 2017) and Stan (Carpenter et al., 2017), utilized in this article allows for the estimation of
random slopes as well as cross-level interactions in both sides of the model. In terms of software
comparison, brms and Stan is the most widely available alternative. The only other software that has
been utilized to estimate this model is Stat-JR which is also a Bayesian program that is distributed
with MLWin (Browne, 2017). MixRegLs (Hedeker & Nordgren, 2013) or MixWild does not allow
for random slopes on the scale side, and as of version 8.0, Mplus (Muthén & Muthén, 1998-2017)
can specify heterogeneous variances, but it is unclear how a random slope could be incorporated on
the scale side. Perhaps, the dynamic structural equation modeling framework (Asparouhov,
Hamaker, & Muthén, 2018) that incorporates time series analysis into a structural equation modeling
framework could provide an alternative.

Bayesian analyses offer several statistical advantages; however, these approaches are also unfa-
miliar to many researchers. Providing priors is an extra step in conducting an analysis, and research-
ers must ensure that their choices regarding priors do not influence the final result inappropriately.
While brms helps reduce the burden on researchers by supplying default priors that seek not to
influence the final results, this is still an issue that researchers should consider. Convergence issues
can occur in Bayesian analysis, and when they do, researchers must resolve these issues by inves-
tigating various convergence diagnostics. Particularly, researchers may face challenges when esti-
mating random slopes on both sides of the model. We provide code to perform the analyses but do
not provide a lengthy discussion of the process of addressing convergence issues. We encourage
researchers to consult accessible resources, including Kruschke (2015) and McElreath (2016), as this
process is very data/model dependent.

To demonstrate the flexibility provided by utilizing a Bayesian approach to testing variability-
related hypotheses, we present a complex MELS model (i.e., with random slopes on the location and
scale sides). However, in some cases, less complex models may be more aligned with the questions

Figure 13. Bar chart displaying random intercept and slope standard deviations by strategy.
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of substantive interest. We recommend readers use Appendix E as a tool to consider the different
types of models they may estimate and to pick the model that best fits their theory and research
questions.

One very important takeaway from our review of the existing literature is that precise language is
necessary when interpreting complex multilevel models. We found instances where researchers
were conducting traditional multilevel models (e.g., growth models) and interpreting the results
as if they were predicting heterogeneous variances. Language such as “we predicted variability”
may lead readers to think that the study is predicting heterogeneous residual variances when the
study is actually using a traditional multilevel model to explain a portion of a single variance
estimate that the model provides for everyone in the study (e.g., a Level 2 predictor explains some
random intercept variance; see Figure 3). Thus, we recommend that researchers use more precise
language when describing their analysis. For example, researchers applying these models should
clarify that they used a MELS or heterogeneous variance model to predict heterogeneous residual
variances. This language should make it clear that the outcome of interest is a variance-based
construct and that these analyses are distinct from explaining variability as is done in a typical
regression analysis.

Researchers may have questions regarding centering decisions in MELS and heterogeneous
variance models. To our knowledge, researchers have not examined this issue with these specific
models. However, given that the scale- side of the model is a log-linear model, researchers may
interpret the ts as they would the bs on the scale side. Enders and Tofighi (2007) advise that
centering decisions should be based on the research question of interest. Researchers who are
interested in Level 1 predictors could include the group mean centered version of the Level 1
predictor without including the Level 2 variable. However, if this approach is used, it is important
to remember that all Level 2 variability is being ignored. When researchers are interested in both
Level 1 and Level 2 versions of the same predictor, then either group or grand mean centering can be
used to provide the Level 1, the Level 2, and the contextual effect. Either approach will provide two
of these three effects, and the third effect can be calculated from the other two (Enders & Tofighi,
2007). Further, for researchers interested in a Level 2 predictor only, centering decisions are not
overly complicated, and advice concerning single-level regression analyses applies.

Researchers may be interested in providing effect size calculations for models with random
slopes on the scale side. Pseudo-R2 values could be calculated for each of the variance components
in this model, and they have been shown to work well with models that include random intercepts on
both the location side and the scale side (Walters et al., 2018). However, these analyses have yet to
be extended to the random slope case. Until this research is conducted, researchers may consider
using the intuitive effect size estimate obtained by calculating the proportional increase/decrease in
the standard deviation (Lang et al., 2018).

Researchers should be aware that a mediation version of the MELS model has also not yet been
developed and evaluated. Many of the hypotheses discussed in this article could easily be expanded
to include mediated relationships. For example, the LMX example could be extended to view LMX
differentiation as a mediator and add group performance as the distal outcome (Henderson et al.,
2009). To address this hypothesis without the shortcomings of aggregation, a mediation version of
the model would need to be developed.

Power analyses have also not yet been conducted for the full MELS model presented in this
article (i.e., random slopes on both sides of the model). However, recent research examining less
complicated models has begun to provide some insight into power issues with these analyses. For
example, Walters et al. (2018) found that the power to detect the scale-model random intercept
variance and the effect of an individual-level predictor of residual variability increased with the
number of individuals and occasions of measurement (and provided power curves that may help
researchers planning to conduct a similar analysis).
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Research on longitudinal modeling has demonstrated the benefits of model building that occurs in
a step-up fashion where the models start simple and become increasingly complex. For example,
polynomials of increasing order are often fit to get the best model for improvement over time before
adding any additional predictors to the model. Within a given side of the model, it makes sense to
model the effect of time correctly before adding in any additional predictors. However, whether
researchers should model the location (mean) or scale (variance) side of the model first remains an
open question or future research. As methodological work on these models proceeds, researchers
should ground their modeling building in theoretical arguments and also test multiple competing
models. These models can be compared using the Watanabe-Akaike information criterion (WAIC;
Gelman, Hwang, & Vehtari, 2014) which is an extension to the commonly applied Akaike infor-
mation criterion (AIC; Akaike, 1998) that does not assume that posterior distribution is approxi-
mately multivariate normal. We provide examples illustrating how to conduct model comparisons in
the supplemental material.

Conclusion

Variability is no longer viewed as something to be averaged over, ignored, or tricked into fitting the
assumptions of a typical general linear model. It is substantively interesting to researchers working
in many different areas. Regression models produce normal distributions that are conditional on the
values of the predictors and their associated regression coefficients. Like any normal distribution,
these distributions are characterized by both the mean and the variance. Thus, every effort that is
used to model the mean correctly should be used to model the variability correctly as well. By
expanding the multilevel repertoire to include MELS and heterogeneous variance models, research-
ers can appropriately analyze mean and variability-related hypotheses at multiple levels
simultaneously.

Appendix A

Glossary

This glossary provides definitions for key terms presented in the main text. Additional terms are
defined in the supplemental material (e.g., terms presented in the analysis output).

Substantive Terms

Variance-based constructs: Constructs that are defined by their variability (e.g., standard devia-
tion, variance, range) instead of their mean. For example, pay dispersion within a company is
defined by the variability in pay among members, not by the (average) amount of pay.

Multilevel Terms

Fixed effects: Parameters that do not vary across groups/persons. There is a single estimate for the
entire population. The brms software labels these population effects. The reason for this distinction
is discussed in Gelman and Hill (2006). In this article, we use the term fixed effects. Fixed effects do
not have a group subscript on the coefficients (e.g., g10)

Random effects: Parameters that are allowed to vary across groups/persons. Each group/person
receives their own estimate for these parameters. The focus is typically on the mean/variance of
these effects. These are labeled group effects by brms. We use the term random effects throughout
the article. A coefficient that is allowed to vary randomly will have a group subscript (e.g., b0j).
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Heterogeneous variance models: This model includes an equation to predict the mean (like any
typical general linear model, including t tests, analysis of variance, regression) and also an equation
to predict or model heterogeneous variances. Equation 3 in Figure 1 presents the equation for a
heterogeneous variance model; this model does not contain random effects on the scale side of the
model (i.e., no ns). The model results in heterogeneous variance that is systematically varying (i.e.,
the only reason the variances are heterogeneous are due to our predictors of interest). This model is
making the assumption that we know exactly why the variances are heterogeneous (i.e., Wj). The
longitudinal example presented in this article is a heterogeneous variance model (predicting Level 2
variance) because it does not have random effects on the scale side of the model.

Mixed-effects location-scale models (MELS): Similar to the heterogeneous variance model,
MELS includes an equation to predict the mean and also an equation to predict or model hetero-
geneous variances. Specifically, this multilevel model includes a model for the mean (location) as
well as the (log) residual standard deviation/variance (scale). The distinguishing characteristic of
this model is that it contains random effects on both sides of the model (see Equation 4 in Figure 1).
This model relaxes the assumption that researchers know exactly why some groups have more
within-group variability than other groups by including random effects. The nested cross-
sectional example presented in this article is an example of a MELS model.

Bayesian Terms

Prior distributions: Represent the information available about the parameter of interest before the
study is conducted. Prior distributions may either be informative (i.e., represent the researchers’
beliefs regarding plausible parameter values) or noninformative (i.e., attempt to have a prior that
does not affect the results).

Improper flat priors: Improper refers to the fact that the prior distribution does not integrate to a
finite value (e.g., 1). If the prior integrates to a finite value other than 1 (e.g., q), then it can be
multiplied by its reciprocal (1/q) to achieve a proper prior that integrates to 1. Flat indicates that the
prior assumes that all values are equally likely that would appear on a graph as a horizontal or flat
line. In Stan, parameters that are not assigned a prior are assumed to have an improper flat prior.
Please note that in some other Bayesian programs (e.g., JAGS/BUGS) the user must specify a prior
distribution for all parameters.

Likelihood: Represents the contribution of the data in Bayesian inference. It is the density (e.g., a
normal distribution) for the observed sample for a given parameter value. The likelihood is viewed
as a function of the parameter for fixed data and is often denoted as L(y|x) ¼ f(x|y) (Casella &
Berger, 2002) where y is the parameter vector, x is the observed data, and f(x|y) is the joint
probability density or probability mass function given y. This combination, which is obtained by
multiplying the prior by the likelihood, is known as the posterior distribution.

Posterior distribution: Posterior distributions reflect the updated plausibility of the parameter
values after the likelihood has been combined with the observed data.

Hamiltonian Monte Carlo estimation: Uses a physics simulation to propose new parameter
values in the Markov chain Monte Carlo (MCMC) process. The simulation utilizes four pieces of
information to conduct this simulation: (a) the numerator of Bayes’s theorem, (b) the gradient, (c)
the number of steps to be taken, and (d) the length of those steps. The role of each of these pieces of
information is explained in Appendix C. For more information, see the following texts: Kruschke
(2015), McElreath (2016), and Neal (2010).

No-U-Turn Sampler: The No-U-Turn Sampler is the algorithm used by Stan to ensure that the
sampling procedure does not take a U-turn and produce new estimates that are very similar to those
produced at the prior iteration. This algorithm is described at length in Appendix C.
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Effective sample size: The samples that are generated by the MCMC process are correlated
to some degree. Thus, the amount of information in the samples is less than there would be if
the sampled estimates were uncorrelated. This results in increased estimation uncertainty. The
Stan reference manual describes effective sample size as the number of independent samples
with equivalent estimation power as the autocorrelated samples obtained from the MCMC
process. The more correlated the samples are the smaller the effective sample size. See
https://mc-stan.org/docs/2_18/reference-manual/effective-sample-size-section.html for addi-
tional information.

Start value sensitivity: We use this term to indicate that the results obtained from the Bayesian
estimation are sensitive to the initial parameter estimates that were provided to the estimation
procedure. In other words, where the estimation procedure starts is affecting where it ends up. To
assess whether this is the case, multiple independent chains with different starting values can be used
to assess whether they arrive at the same posterior distribution.

Chains: The number of chains indicates the number of independent starting points (draws) in the
sampling procedure. Within a chain the sample parameter estimates are dependent on one another
(autocorrelated); however, between chains the estimates are independent. Multiple chains are used
to assess convergence (i.e., that multiple starting points have converged to the same posterior
distribution).

Potential scale reduction factor: Used to assess the convergence of a set of simulated chains. It
is calculated as the square root of the marginal posterior variance divided by the within-chain
variance. Values less than 1.05 are considered satisfactory (Asparouhov & Muthén, 2010).

Appendix B

Introduction to Bayesian Statistics

Like any branch of statistics, Bayesian methods seek to use information from a sample to learn about
plausible values for an unknown parameter of interest. Informally, Bayesian statistics provide a
mathematical way of learning from experience where experience comes in the form of data (e.g.,
Kruschke, Aguinis, & Joo, 2012; McElreath, 2016). Learning is reflected by the reallocation of
credibility from what was thought originally, referred to as the prior, to the new set of beliefs
regarding credible values of the parameter, the posterior. This appendix provides a brief introduction
to how Bayesian methods are used to estimate the plausibility of parameter values given data.
Several years ago, Kruschke and colleagues (2012) provided an introduction to Bayesian methods
and highlighted several general advantages over frequentist approaches. For example, while null
hypothesis significance testing tells researchers the “probability of obtaining the data in hand, or a
more extreme unobserved data, if the null hypothesis were true . . . [Bayesian approaches tell
researchers] the credibility of candidate parameter values given the data that we actually observed”
(p. 723). In other words, they provide the information researchers seek. Further, Bayesian statistics
provide an entire distribution of parameter estimates as opposed to the single point estimate and
confidence interval obtained from frequentist analyses. Importantly, for the models we present,
Bayesian approaches enable researchers to successfully estimate models with many random effects
(e.g., with random slopes on both the location and the scale side of the model). We refer readers to
the article published in this journal by Kruschke and colleagues as well as several introductory texts
for Bayesian methods (e.g., Kruschke, 2015; Lynch, 2007; McElreath, 2016) to gain a more com-
plete introduction to these methods.
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Bayes’s Theorem

Bayes’s theorem is the tool that allows researchers to make inferences about the unknown para-
meters given the data. This section explains how fundamental assumptions of Bayesian approaches
lead to the formulation of Bayes’s theorem. Both Bayesian and frequentist approaches assume that
parameters have a true (fixed) value (Greenland, 2006). Kaplan (2014) describes the fundamental
difference between these approaches as assuming that the unknown parameter of interest has a fixed
value that researchers aim to estimate (frequentist tradition) versus assuming this parameter is a
random variable with a probability distribution that reflects researchers’ uncertainty about the
parameter’s true value (Bayesian tradition). This difference is what allows Bayes’s theorem to
specify the relationship between the prior distribution, the likelihood, and the posterior distribution.

PðparametersjdataÞ ¼ PðdatajparametersÞPðparametersÞ
PðdataÞ

¼ likelihood x prior

data

/ likelihood x prior

Prior distributions are specified before data are collected and may be either informative (i.e.,
represent the researchers’ beliefs regarding plausible parameter values) or noninformative (i.e.,
attempt to have a prior that does not affect the results). It is possible that the choice of noninforma-
tive prior could influence model estimates as well as model selection; thus, a sensitivity analysis
should be performed to determine the influence of the model priors (Depaoli & van de Schoot,
2015). The likelihood is the density (e.g., a normal distribution) for the observed sample for a given
parameter value. The likelihood is viewed as a function of the parameter for fixed data and is often
denoted as L(y|x) ¼ f(x|y) (Casella & Berger, 2002) where y is the parameter vector, x is the
observed data, and f(x|y) is the joint probability density or probability mass function given y. This
combination, which is obtained by multiplying the prior by the likelihood, is known as the posterior
distribution. In other words, combining the prior with the likelihood is how Bayesian statistics
allow researchers to learn from experience. The posterior distribution is what researchers ultimately
use to make inferences and contains the relative credibility of the parameters given the data.

The research containing Bayes’s theorem was published in 1763 (Bayes, 1763); however, the
method was not regularly applied until the 20th century or even the 21st for some fields (Kruschke
et al., 2012). Use of this method was delayed because calculating the denominator of Bayes’s rule
involves a high-dimensional integral that can be very difficult to compute. Computer-intensive
methods (e.g., Markov chain Monte Carlo; MCMC) now allow researchers to approximate the
posterior distribution by drawing representative samples from it without needing to calculate the
denominator in Bayes’s theorem. This is reflected by the final line in the equation above that does
not present the denominator. The variant of MCMC that is used to estimate the models presented in
the article is referred to as the No-U-Turn Sampler (Hoffman & Gelman, 2014). It is described in
detail in the following appendix.

Appendix C

Markov Chain Monte Carlo Appendix

This appendix describes the specific sampling method utilized to approximate the posterior distri-
bution for the Bayesian analyses presented in this article. In the supplemental material, we provide
code to utilize Stan to estimate these models. Stan employs a Hamiltonian Monte Carlo (HMC)
process, which runs a physics simulation where the current estimate or location of the parameters is
viewed as a particle on a frictionless surface (i.e., the negative log posterior). This HMC process
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results in a sampling process that is more computationally demanding to obtain a single sampled
parameter estimate but is much more efficient, thus requiring fewer samples. Overall, this sampling
process takes less time and performs better when models contain more estimated parameters than
other sampling procedures (e.g., Metropolis-Hastings or Gibbs sampling procedures commonly
utilized in Bayesian analyses conducted in OpenBUGS, JAGS, and Mplus; McElreath, 2016). A
limitation of HMC sampling is that this process is designed for continuous parameters, but that is not
a problem for the multilevel models discussed in this article.

Four pieces of information are needed to select each sampled value in the HMC process: (a) the
numerator of Bayes’s theorem, (b) the gradient (i.e., a vector of partial derivatives where the
numerator of Bayes’s theorem is differentiated with respect to each parameter; in other words
the slope in each direction given the parameter estimates’ current location), (c) the number of steps
to be taken, and (d) the length of those steps. The numerator of Bayes’s theorem provides researchers
with information regarding the height given a set of parameter values. The gradient allows research-
ers to know the slope in all directions given a current position (i.e., set of parameter estimates). The
particle or set of parameter estimates is given a random push that is random in terms of both force
and direction. The curvature of the surface (i.e., assessed by the gradient) determines how far the
particle moves.

Because the surface is frictionless, researchers must decide when to stop the physics simulation.
This is where the number of (c) and length of the steps (d) come into play. These two settings are
determined automatically during the “warm-up” phase by Stan. Smaller step sizes result in better
approximations to the continuous process but can make the simulation take a long time to move from
its current position. If the number of steps and step size combination is inappropriate, the sampling
process may “turn around” and return to its previous location. This is what is referred to as the U-turn
problem that results in very high correlation between the parameter estimates. Fortunately, the
number of steps is tuned automatically by Stan using a process that determines when the parameter
estimates are beginning to turn around to return to their previous location. The algorithm utilized by
Stan is called the No-U-Turn Sampler (Hoffman & Gelman, 2014). See the following texts for more
information regarding these samplers (ordered in terms of increasing technical detail): Kruschke
(2015), McElreath (2016), and Neal (2011).

Appendix D

Data Generation

The R code used to generate the data for the examples is provided in the online supplemental
material. We also provide the generated data. Please follow this link to access these materials:
https://osf.io/4ves7/?view_only¼3a4c5e5f9df14a268cfb5d9392bb539e.

In each example, the analysis model is the same as the data-generating model. Thus, the credible
intervals (i.e., the Bayesian term for confidence interval) should (and do) contain the parameter
values.

Nested Cross-Sectional Example

To the extent possible, the coefficients obtained to generate these data are from meta-analytic
estimates (Dulebohn, Bommer, Liden, Brouer, & Ferris, 2012). The correlations from the meta-
analyses were converted to pseudo-R2 values for each respective variance component. Because the
MELS model has not been used to study leader-member exchange (LMX) relationships, there was
no prior information for some pieces of the model. When prior information was not available the
coefficients were chosen to reflect effect sizes typically found in organizational research. The lack of
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prior information from the extant literature to inform the generation of portions of this model is not
detrimental because these data and analyses are intended to be illustrative.

Data Generation

Two hundred fifty teams with sizes ranging from three to ten were generated (M¼ 6.94, SD¼ 1.46).
The equation form of this data-generating model is built on the common notation made popular by
Raudenbush and Bryk (2002) and similar to that presented in Leckie, French, Charlton, and Browne
(2014). The data-generating location model is shown below.

LMXij ¼ b0j þ b1jðSimilarityij % Similarity:jÞ þ eij

b0j ¼ g00 þ g01Similarity:j þ g02ðTransformationalj % Transformational:Þ þ u0j

b1j ¼ g10 þ g11ðTransformationalj % Transformational:Þ þ u1j

ðD1Þ

The Level 1 predictor was perceived similarity (group-mean-centered) and the Level 2 predictors
were the Level 2 similarity effect and transformational leadership which was grand-mean centered.
Grand-mean centering was performed to ensure the interpretability of the similarity simple-main
effects. The predictor variables were generated to be standard normal and assumed to be uncorre-
lated with one another; the regression coefficients were calculated to account for the proportion of
variability that corresponds to the meta-analytic correlation estimates (i.e., .732 ¼ .53 and .52 ¼ .25
for the relationship between LMX and transformational leadership and perceived similarity, respec-
tively; Dulebohn et al., 2012). The Level 1 and Level 2 relationship between LMX and similarity
was held constant. Additional details are provided in the data generation code; Table 3 contains the
data-generating values in the column labeled “True Value.”

The residual values eij in the location model are traditionally assumed to be independent and
identically distributed with a mean of 0 and some constant variance or standard deviation se. The
MELS model relaxes the assumption of constant residual standard deviation by including fixed and
random effects to predict its value. The data-generating scale model for the residual standard deviation
is shown below, which uses the (natural) log link to ensure that predicted residual standard deviation
remains positive as it should.

logðseij
Þ ¼ a0j þ a1jðSimilarityij % Similarity

:j
Þ

a0j ¼ t00 þ t01ðSimilarity
:j
Þ þ t02ðTransformationalj % Transformational:Þ þ n0j

a1j ¼ t10 þ t11ðTransformationalj % Transformational:Þ þ n1j

ðD2Þ

Both the location and the scale model have random intercepts and slopes that can be allowed to
relate to one another. The random effects are assumed to be distributed multivariate normal with a
zero mean vector and a covariance matrix. Thus, the covariance matrix containing these relation-
ships is 4! 4 in this example (see Equation 5 in the article). These estimates are interpreted like any
other covariance/correlation matrix. For example, a negative correlation between the location and
scale random slopes would indicate that leaders who have higher quality relationships with more
similar subordinates are likely to treat those subordinates consistently.

The average residual variance was chosen to ensure that the unconditional (empty model with no
predictors) intraclass correlation (ICC) was within the range typically found in the organizational
sciences (i.e., between 0.15 and 0.30; Mathieu et al., 2012); the ICC for the generated data was
estimated to be 20.36% (i.e., .2036). Figure D1 contains the spaghetti plot of the generated data
where each group is represented by their own line and each data point is a subordinate’s score.
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Longitudinal Example

A cross-level interaction model was used for data generation on the mean side of the model (see
equation below). The inspiration for this longitudinal example was drawn from a computational
model that was not tied to any particular industry (Posen & Martignoni, 2018). Industry-specific
information could play a large role in the values that the coefficients take. Thus, to keep the
inferences general, the coefficients chosen are meant only to reflect the hypothetical substantive
description provided earlier and not to be industry-specific. These data and analyses are intended to
illustrate the sorts of models and inferences that can be made using a heterogeneous variance model.
The heterogeneity of variance in this model takes the form of heterogeneous Level 2 covariance
matrices. In other words, the entire covariance matrix is allowed to vary across the imitator and
control conditions. The specific values of the variances are provided in Table 4. Because the focus is
on the Level 2 variances, 500 firms were generated in this example. Each firm has monthly perfor-
mance data for a year; thus, the 12 time points are viewed as nested within firm. The spaghetti plot of
the data plotting firm performance over time is presented in Figure D2.

Performanceij ¼ b0j þ b1jTimeij þ eij

b0j ¼ g00 þ g01Strategyþ u0j

b1j ¼ g10 þ g11Strategyþ u1j

ðD3Þ

Figure D1. Spaghetti plot for the nested cross-sectional LMX differentiation example.
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The covariance matrices for the random effects were allowed to vary across the groups; see the
covariance matrices presented below. The superscripts are used to denote group membership.
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Appendix E

Alternative Models

The analyses described here are not meant to be a tutorial on a fixed modeling process. In other
words, this is not a step by step tutorial. The research to provide such guidance in an exploratory
model discovery process has not been conducted. This tutorial assumes a confirmatory modeling
process where a model of theoretical interest is tested using the mixed-effects location-scale model.
Traditional multilevel models are also presented to provide the reader with a familiar context and to
allow us to more clearly illustrate the new research questions that can be answered using the mixed-
effects location-scale model. The models are presented generically for both longitudinal and nested
cross-sectional designs without reference to specific outcome variables.

The discussion proceeds from least complex to more complex starting with an empty general
linear model and building to the mixed-effects location-scale model that has random intercepts and
slopes on the location and scale sides of the model. Differences between the successive models are

Figure D2. Spaghetti plot for longitudinal between firm performance variability example. Control firms are
displayed on the left and imitator firms are displayed on the right.
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denoted by bold font. In the covariance matrices, only parameters below the main diagonal are
bolded because those above the diagonal are identical. R code to estimate these models is available
in the online supplemental material.

The empty model contains no predictors on either side of the model; thus, this model simply
provides an estimate of the overall population mean and the amount of variability around that mean.
This is the model against which a random intercept multilevel model is typically compared.

Empty Model

Random Intercept MLM

The random intercept multilevel model is the model that is typically used to calculate an intraclass
correlation that measures the proportion of Level 2 variability or provides an estimate of the average
covariance between the Level 1 units. In nested cross-sectional data (e.g., where employees are
nested within a team), this would represent the proportion of variability that is between groups and
estimate the average amount of covariance between individuals in the same group. A similar inter-
pretation is given for longitudinal data where time is viewed as being nested within person/firm. The
ICC provides an estimate of the amount of between person/firm variability and an estimate of the
average amount of covariance between time points from the same person/firm. In terms of para-
meters estimated, the only different between the random intercept model and the empty model is the
addition of the random intercept variance.

u0j*Nð0;σ2
u0
Þ

Random Intercepts for the Location and Scale

In the models considered so far, the amount of variability between and within groups has been
considered constant. The first mixed-effects location-scale model that we estimate allows us to
assess whether that is a reasonable assumption. This model allows us to answer a question that
cannot be answered using a traditional multilevel model (i.e., do some Level 2 units have more
within-group/person variability than others). Also, the magnitude of the covariance between the
random intercepts can be evaluated to assess whether Level 2 units with high/low mean tend to be
more more/less variable. The covariance matrix of the Level 2 random effects is presented in the
equation below. The su0n0

term indicates that the random intercept terms are allowed to covary with
one another. Once again, this model could apply to both longitudinal or nested cross-sectional data;

Location Scale

Level 1 Yij ¼ B0j þ eij logðseij Þ ¼ a0j

Level 2 B0j ¼ g00 þ u0j a0j ¼ t00

Combined Yij ¼ g00 þ u0j þ eij logðseijÞ ¼ t00

Location Scale

Level 1 Yij ¼ B0j þ eij logðseijÞ ¼ a0j

Level 2 B0j ¼ g00 a0j ¼ t00

Combined Yij ¼ g00 þ eij logðseijÞ ¼ t00
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measurements could be obtained from individuals nested within groups or repeated measurements
over time from individuals or companies.
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Random Slope Location and Random Intercept for the Scale

In addition to random intercepts, random slopes can be included on both the location side and the scale
side of the model. This indicates that the strength of the relationship between the outcome and the
predictor depends upon group membership. A random slope allows both the fixed and random effect of
the variable (see the bolded terms in the equation provided below). On the mean side, a random slope
indicates that the magnitude of relationship between the Level 1 predictor and the mean level
varies depending upon the group. For some groups there is a strong relationship such that those
individuals with relatively higher Level 1 scores are predicted to have higher/lower mean
outcome ratings. The relationship is not as strong for other groups. The covariance between
the random slope and the random intercepts can also be investigated which would provide the
researcher with information regarding whether those groups with higher/lower within group
variability or means tend to have larger/smaller Level 1 slopes. As has been the case throughout
this discussion, this model can be estimated using longitudinal or nested cross-sectional data.
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Random Slopes on Both the Location Side and the Scale Side of the Model

The final variance partition is to allow similarity to have a random slope on the scale side of the
model. This parameter has a similar interpretation as the random slope on the mean side of the
model. Specifically, the effect of the Level 1 predictor on variability depends on the group. For some
groups, the variability is decreased/increased as the relative Level 1 variable changes while for
others it does not. Once again, the covariance among the random effects can be interpreted as well.
For example, the covariance among the random slopes assesses whether those groups with stronger/

Location Scale

Level 1 Yij ¼ b0j þ b1jðXij % X :jÞ þ eij logðseijÞ ¼ a0j

Level 2 B0j ¼ g00 þ u0j a0j ¼ t00 þ n0j

B1j ¼ g10 þ u1j

Combined Yij ¼ g00 þ g10ðXij % X :jÞ þ u0j þ u1jðXij % X :jÞ þ eij logðseijÞ ¼ t00 þ n0j

Location Scale

Level 1 Yij ¼ B0j þ eij logðseijÞ ¼ a0j

Level 2 B0j ¼ g00 þ u0j a0j ¼ t00 þ n0j

Combined Yij ¼ g00 þ u0j þ eij logðseijÞ ¼ t00 þ n0j
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weaker Level 1 mean effects have stronger/weaker effects on variability. This model is depicted in
Figure 4 in the article.

u0j

n0j

u1j

n1j

0

BB@

1

CCA*MVNormal

0
0
0
0

2

64

3

75;

s2
u0

su0n0
su0u1

su0n1

sn0u0
s2
n0

sn0u1
sn0n1

su1u0

σn1u0

su1n0

σn1n0

s2
u1

su1n1

σn1u1
σ2
n1

2

6664

3

7775

0

BBB@

1

CCCA

Predicting the Variance Components

Once the variance partitioning is completed, predictors of interest can be added to explain the
various sources of variation. For example, Level 2 predictors can be used to explain any of the four
random components that have been discussed (i.e., random intercepts and slopes on both the mean
side and the variability side of the model). Although this is more complex than a traditional multi-
level model, explaining the variability components is conceptually the same. The leader-member
exchange example presented in the article is an example of this sort of model.
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In summary, mixed-effects location-scale model allows researchers to answer research questions
regarding heterogeneous variances that cannot be addressed using traditional multilevel models. The

Location Scale

Level 1 Yij ¼ B0j þ B1jðXij % X:jÞ þ eij logðseijÞ ¼ a0j þ a1jðXij % X:jÞ

Level 2 B0j ¼ g00 þ g01ð !X:j%X::Þ þ g02Wj þ u0j a0j ¼ t00 þ t01ð !X:j%X::Þ þ t02Wj þ n0j

B1j ¼ g10 þ g11Wj þ u1j a1j ¼ t10 þ t11Wj þ n1j

Combined Yij ¼ g00 þ g10ðXij % X:jÞ þ g01ðX:j%X::Þ þ g02Wj þ u0j þ
g11WjðXij % X:jÞ þ u1jðXij % X:jÞ þ eij

logðseijÞ ¼ t00 þ t10ðXij % X:jÞ þ
t01ðX:j%X::Þ þ
t02Wjþn0j þ
t11WjðXij % X:jÞ þ
n1jðXij % X:jÞ

Location Scale

Level 1 Yij ¼ B0j þ B1jðXij % X:jÞ þ eij logðseijÞ ¼a0j þ a1jðXij % X:jÞ
Level 2 B0j ¼ g00 þ u0j a0j ¼ t00 þ n0j

B1j ¼ g10 þ u1j a1j ¼ t10 þ n1j

Combined Yij ¼ g00 þ g10 ðXij % X:jÞ þ u0j þ u1jðXij % X:jÞ þ eij logðseijÞ ¼ t00 þ t10ðXij % X:jÞ þ n0j þ n1jðXij % X:jÞ
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mixed-effects location-scale model allows researchers to quantify and predict heterogeneous resi-
dual variances while simultaneously accounting for any mean predictors of interest. Level 1 or Level
2 variables may be utilized to predict heterogeneous variance, and Level 1 predictors may be
allowed to have effects that vary across groups. Figures 2 to 4 provide depictions that highlight the
differences between the traditional multilevel models and those discussed here.

Appendix F

Calculations for Effect Size

The scale side of the MELS/heterogeneous variance model uses a log transformation. Thus, the
outcome of the log-linear model is the log standard deviation. This is unlikely to be intuitive in terms
of interpreting effect sizes; however, transformations can be performed to make the metric more
interpretable. Exponentiating both the predictor and outcome sides of the equation puts the outcome
on the standard deviation metric. To demonstrate how this works we will thoroughly explain the
effect of a one standard deviation increase in transformational leadership when similarity is at its
mean of zero. Similarityij and Similarity

:j
(i.e., an individual having a score of zero where the group

mean is also zero) is important for this demonstration simply because it allows us to examine the
effect that transformational leadership has on the predicted standard deviation without considering
the interaction term.

logðseij
Þ ¼ a0j þ a1jðSimilarityij % Similarity

:j
Þ

a0j ¼ t00 þ t01ðSimilarity
:j
Þ þ t02ðTransformationalj % Transformational:Þ þ n0j

a1j ¼ t10 þ t11ðTransformationalj % Transformational:Þ þ n1j

Substituting the similarity values of interest into the equation presented below results in the
simplified formula. Thus, assuming a constant n0j at zero, the predicted log standard deviation for
a group with a leader at the average level of transformational leadership equal is t00 and the
predicted value for a group with leader that is one standard deviation above the mean in transforma-
tional is t00 þ t02.

logðseij
Þ ¼ t00 þ t02ðTransformationalj % Transformational:Þ þ n0j

As state previously, converting this to the standard deviation scale from the log standard devia-
tion scale is done by exponentiation. Thus, the group with a mean transformational leadership score
is predicted to have a standard deviation of et00 ¼ e%:14 ¼ :87. The same calculation results in
et00þt02 ¼ e%:14%:07 ¼ :81 for a group with leader that is one unit above the mean on transformational
leadership. The percentage change is calculated as follows: [(.81 – .87)/.87] ! 100 ' 7%.
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Notes

1. Please note that “group” could refer to any Level 2 grouping variable. In the first illustrative example this is

people nested within a supervisor’s workgroup, and in the second illustrative example this is time nested

within firm. However, the grouping variable could represent individuals, teams, departments, organizations,

industries, and so forth.

2. This article is not concerned with contextual effects.
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